

Application

- Solar energy, wind energy
- · Electric power, nuclear power
- Communication
- Ship, maritime affairs
- UPS, medical facilities and emergency lighting
- Situation with high environmental protection and energy-saving

Terminal Dimensions

Standards & Certifications

Execution standard:

IEC60896-21/22 DIN40742 BS EN 61427-2002 YD/T 1360-2005 Q/321284KCC 03-2006

Authentication and certificate:

Certificate of Qualification on Perfecting

Measurement & Measuring System

GB/T19022-2003

IS010012:2003ÐIDT

Quality Management System Authentication

GB/T19001-2000

NO.03006Q10002R0M-2

Environmental Management System Authentication

ISO 14001:2004

NO.010607E2024R1M-2

Occupational Health Management System

Authentication

GB/T28001-2001

NO.010607S10147R0M-2

 $\label{lem:product} \textbf{Product authentication:}$

YD/T1360-2005

NO.030074640567R1M

CE authentication

EN 61000-6-3:2001+A11:2004

EN 61000-6-1:2001

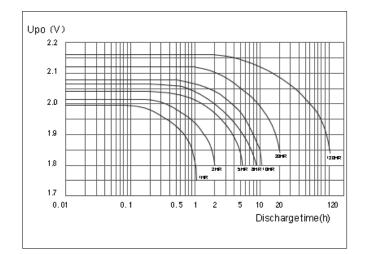
National Industrial Product Production License

XK06-044-00012

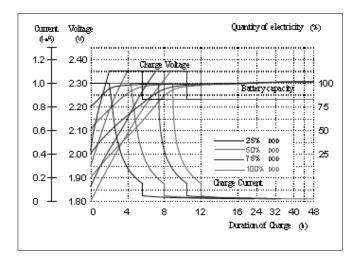
Product Quality Test Free Certificate

(2006)GM(321630488)

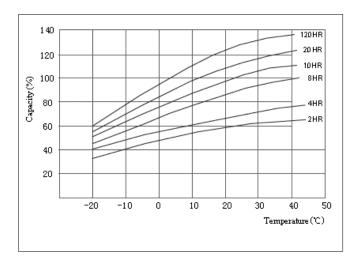
Export product quality license

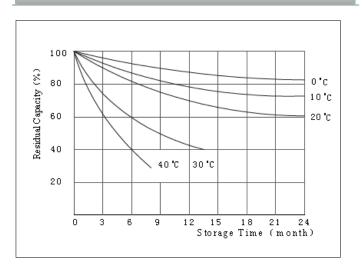

Features of performance application

- Designed service life of 20 years
- · High cycle service life
- Better temperature resistance performance
- Excellent deep cycle performance
- Superior low current discharge performance
- Stronger constant power discharge capability
- Better charge acceptability
- · Better safety performance and reliability
- · Modular and personified installation design
- High Performance price/ratio and low yearly operating cost
- Eco-friendly, cycle applicatio
- Electrolyte: primary material adopts Germany gas silicon dioxide, the material will be the thin collosol state when it's injected initially, and it can fill the whole plate space of battery, and each part of plate can react evenly. The flooded electrolyte design can avoid dry up of battery when it's in high temperature and over charged, the thermal capacity is big and heat-elimination is fine, accordingly, thermal runaway can be avoided. The electrolyte is in the gel state in finished battery without flowing, accordingly, leakage and lamination can be avoided.
- Plate: positive plate adopts tubular type plate which can effectively prevent active substance
 falling, the positive plate frame is molded with multi-component alloy, the crystal particle
 of alloy structure is tiny and dense, the corrosion-resisting performance is fine and service
 life is long. Negative plate adopts pasted plate, the grid adopts radiated structure which
 enhances utilization ratio of active substance and discharge capability of strong current, and
 the charge reception capability is strong.
- Battery case: it's made of ABS material, corrosion prevention is fine, strength is high, and appearance is beautiful, it can be sealed with lid reliably which can prevent potential leakage risk.
- Separator: adopt special micro-pore PVC-SiO2 separator from Europe AMER-SIL Company, the porosity of separator is big and resistance is low. It has bigger electrolyte storage space.
- Terminal sealing: the built-in copper core lead-base terminal post has stronger current carrying capacity and corrosion resistance. The unique double sealing structure of terminal post can effectively avoid leakage, guarantee reliability of terminal post sealing.
- Safety valve: adopt Germany technology, constant opening and closing valve, high reliability, the accumulator case expansion, damage and electrolyte dry up can be avoided.


Battery Model	16 OPzV 2000
Rated voltage	2V
Capacity(25 °C)	2000Ah @ 10hr to 1.80V per cell
Weight	156kg (343.2 lb)
Reference internal	0.22m0hm@ 25°C(77°F)
Resistance (charged)	9318A (0.1S reference value)
Short circuit current	
Max discharge current	6000A (5sec)
Self-discharge	<20% 180 days@ 25°C (77°F)
Temperature range	Application: -20°C~50°C(-4°F~122°F)
	Storage: 0°C~20°C(32°F~68°F)
	Recommendation: 20°C~25°C(68°F ~ 77°F)
Max charge current	400A
Charge voltage	Float charge: 2.23V, average charge: 2.35V
@ 25 °C	Temperature compensation factor: -3 mV/°C
Terminal output	M10 copper terminal (HPb59-1)
Recharge time	See figure 2

DATASHEET 16 OPzV 2000


Discharge Characteristic


Constant voltage charge

Relationship of Capacity and Temperature

Relationship of Residual and Storage

Constant current discharge ratings-amperes at 25 °C																
	5MIN	10MIN	15MIN	30MIN	45MIN	1HR	1,5HR	2HR	3HR	4HR	5HR	8HR	10HR	20HR	100HR	120HR
1.90V	1387	1229	873	800	780	696	620	520	410	331	282	205	170	91,04	23,65	20,14
1.85V	1509	1284	1000	960	827	792	680	576	453	365	311	218	181	100,1	24,90	21,21
1.80V	1681	1614	1331	1232	1017	984	860	676	520	418	351	240	210	104,4	25,77	21,95
1.75V	1748	1729	1584	1408	1200	1100	946	720	544	435	363	246	214	108,3	26,41	22,50

Constant power discharge ratings-watts at 25 °C																
	5MIN	10MIN	15MIN	30MIN	45MIN	1HR	1,5HR	2HR	3HR	4HR	5HR	8HR	10HR	20HR	100HR	120HR
1.90V	2808	2376	1132	1069	1040	1010	942	873	725	621	540	392	338	182,1	47,30	40,28
1.85V	2985	2474	1556	1360	1274	1188	1090	992	816	688	595	426	367	198,2	49,30	42,00
1.80V	3090	2966	2096	1935	1789	1643	1437	1231	990	815	691	488	409	204,6	50,51	43,02
1.75V	3196	3160	2453	2205	2020	1835	1601	1367	1071	861	716	488	409	209,0	50,97	43,43